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Abstract

This numerical investigation of lifted di�usion ¯ames examines the interaction of ¯ame and surface from a heat
transfer perspective. Conduction is the primary mode of heat loss from the laboratory-scale ¯ame. Heat ¯ux pro®les
to the lower chemically inert boundary are obtained for three di�erent models: a ®nite-rate chemistry model, a
simpli®ed heat conduction model, and the limiting case Burke±Schumann model. Generalizations are made about

the shape of the heat ¯ux pro®les to the anchoring boundary, as well as the practical usefulness of the presented
models. A characteristic ¯ame thickness is also de®ned from the generalized heat ¯ux shape. # 2000 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Real ¯ames interact with surfaces. These interactions

may be primary, in which case the interaction of the

¯ame with the surface cannot be ignored in an analysis

of ¯ame behavior, or secondary, in which case the

solid surface is largely incidental to the combustion

process. The ¯ame-surface interaction includes many

physical processes: ¯ame chemistry; ¯uid ¯ow

dynamics; conductive, convective, and radiant heat

transfer. For this reason a comprehensive theoretical

model is exceedingly di�cult, perhaps impossible, to

construct. On the other hand, a pure numerical study

without theoretical guidance is likely to make few

novel observations. A similar statement applies of

course to experimentation, thus suggesting that a

`democratic' investigation, in which every conceivable

in¯uence is equally weighted and seriously considered,

will surely fail for not making distinctions between

what is important and what is unimportant.

Consequently, the development of theories for simpli-

®ed limiting cases is a necessary part of a rational

examination. Although theories almost by de®nition

involve the suppression of some physics, this sup-

pression ideally should have a positive, not a negative,

aspect. This is adumbrated in the following quotation:

``Idealization does not consist, as is commonly

believed, in a subtracting or deducting of the petty and

secondary. A tremendous expulsion of the principal

features rather is the decisive thing, so that thereupon

the others too disappear'' [1]. Thus, it is the promi-

nence of various model (theory) features which, by

necessity, force the remaining features into the back-

ground. Finally, we note from practical experience that

large-scale numerical simulations often employ simplis-

tic `sub-models' in order to describe processes that can-

not be fully resolved by the global theory. It is

imperative that such `sub-models' faithfully represent

the `sub-problem' they purport to describe. They must
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also be integrated with su�cient ease into the larger

computation.

The purpose of this study is to ®rst examine the

leading edge of a ¯ame in terms of the heat transfer

during the quenching of a ¯ame leading edge by an

adjacent, cold, solid surface. The conductive heat

transfer from a ¯ame to a nearby surface is important

for ensuring a continued supply of fuel, as in ¯ame

spread, or for ensuring ¯ame survival, as in burner-

attached ¯ames. In the former case, the transfer of

heat from the spreading ¯ame gasi®es the solid fuel

beneath it, producing the fuel vapors that feed it with

reactant. In the latter case, the heating of the burner

rim by the ¯ame minimizes transient heat losses,

thereby maximizing reactant consumption while pre-

venting possible ¯ame extinction. Studies have recently

been completed on various features of ¯ame-wall inter-

action, in con®gurations reminiscent of both ¯ame

spread [2] and burner-attached ¯ames [2,3].

A second feature of ¯ame-surface interaction that

we wish to investigate is the ¯ame behavior as pre-

dicted by the relatively simple analysis of the conserved

scalar mixture fraction combined with in®nitely fast-

rate chemical kinetics. As will be shown in compari-

sons to numerical solutions of the non-linear, ®nite-

rate chemistry problem (model problem `A'), the exam-

ination of the mixture fraction ®eld can provide valu-

able insight into the ¯ame quenching mechanism. In

addition, the study of model problem `A' provides the

necessary impetus for examining the quenching prob-

lem discussed previously. Nevertheless, certain analyti-

cal solutions obtained by these means shall exhibit

almost no correspondence with our detailed examin-

ation.

From a practical viewpoint, and in terms of material

response, the most important quantity to examine is

the conductive heat ¯ux, both to the surface and at

various locations in the gas. Radiative heat losses are

ignored for two primary reasons: in small scale com-

bustion, conductive losses are dominant [4] and under

micro-gravity conditions, soot and gas radiation are

generally diminished. Currently, we know very little

about such conductive ¯uxes, including their character-

istic orders of magnitude or their functional shapes.

Although some progress has recently been made in this

area [2], we are far from a satisfactory understanding

that might enable the use of such estimates in any en-

gineering capacity. Our analysis herein has features in

common with Ref. [5], where the nature of the

opposed-¯ow ¯ame spread over solid fuels was exam-

ined in detail. The simpli®cations provided by employ-

ing in®nite rate chemistry and an idealized geometry

for gas ¯ow and ¯ame spread enabled numerous

deductions to be made, which might otherwise have

Nomenclature

b reduced Damkohler number
cp speci®c heat
D binary di�usion coe�cient

Da Damkohler number
H excess enthalpy
l half channel width

N non-dimensional spatial coordinate
Pe Peclet number
q heat ¯ux

R non-dimensional spatial coordinate
rq quenching distance, �x2 � Z2�1=2 in x, Z coordi-

nates of Fig. 1
r 0q quenching distance, �u2 � v2�1=2 in u, v coordi-

nates of Fig. 2
S scaling factor
T temperature

u, v dimensional conformal mapping coordinates
U, V non-dimensional coordinates �u=rq, v=rq)
v velocity

W reaction term
w non-dimensional reaction term
x, y dimensional coordinates

Yi mass fraction of species i

yi non-dimensional mass fraction of species i
Z mixture fraction
a thermal di�usivity

a a � 1ÿ T0=Tf

b Zel'dovich number, b � a�E=RTf �
bi curve ®t parameter

f global stoichiometric index
Z non-dimensional spatial coordinate
W heat transfer parameter detailed in (Eq. (22a))

l thermal conductivity
n ratio of oxidizer mass to fuel mass
y non-dimensional spatial coordinate
r density

t non-dimensional temperature, t �
�Tÿ T0�=�Tf ÿ T0�

X, x non-dimensional spatial coordinates

i counter
F fuel
f ¯ame

O oxidizer
0 reference boundary value
q quench
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remained hidden in excessive detail. One of these was

the seemingly paradoxical result, long since con®rmed
by numerical examination [6] that the streamwise con-
ductivity through the solid fuel bed plays a minor,

almost negligible, role in the rate of ¯ame spread. In
addition to the heat ¯ux into walls and surfaces, it is
also worth examining heat ¯uxes across various planes
in the gas [5].

Of particular interest in our model problem is the
¯ux directed from the ¯ame leading edge towards the

nearby surface. As discussed in Refs. [2,7], this ¯ux

can change signi®cantly from very large values near
the leading edge, where the ¯ame quenches, to much
smaller values near the surface, where the gas loses

thermal energy to the wall.

2. Background

In this article, we shall examine a greatly simpli®ed

Fig. 1. (a) Model con®guration and boundary conditions. The side and lower walls are porous to reactants. The vertical walls

admit only di�usive ¯uxes. In the far ®eld the di�usion ¯ame is one-dimensional. The near ®eld triple ¯ame structure is shown,

with (I) as the di�usion ¯ame, (II) and (III) as rich and lean premixed ¯ame arcs, and (IV) as the triple point or leading ¯ame

edge. (b) Heat transfer model for in®nitesimally thin ¯ame sheet and isothermal boundary conditions. This model is the heat trans-

fer simpli®cation of the ¯ame in (a) because by far the greatest heat release is along the di�usion ¯ame arc.
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heat transfer model problem (model `B') in the light of

a fuller (but still simpli®ed) model `A'. The latter
includes ®nite-rate chemistry. It has been shown in
past work that model `A' is an often quantitatively

accurate representation of the actual, physical problem
[8]. This conclusion was reached by comparing ¯ame
behavior in model `A' with a variable property

Navier±Stokes simulation.
In this section, we shall restate and examine various

previous results from the analysis of model `A'. We
shall also present various analytical results from this
model for the in®nite-rate chemistry limit. This exam-

ination will be conducted with the intent of providing
motivation for a detailed examination of the pure heat

transfer model `B' in Sections 3±5.
Model `A' describes qualitatively a fuel injector

problem and more rudimentarily a general lifted triple

¯ame resembling, but di�erent in some features than, a
¯ame-spread problem. The model con®guration is

shown in Fig. 1(a). The fuel ¯ows past one side of an
impermeable, perfectly conducting divider and mixes
with the oxidizer stream that ¯ows past its other side.

Permeable walls through which fuel and oxidizer separ-
ately di�use are aligned with the bulk ¯ow direction,
which is vertical. Depending on the global stoichi-

ometry, the di�usion ¯ame inclines either to the left, to
the right, or lies directly downstream of the divider.

This model produces a triple ¯ame con®guration with
a premixed ¯ame arc anchoring the di�usion ¯ame to
the lower boundary. The di�usion ¯ame extends down-

stream from the anchor point. Fig. 1(a) shows a sche-
matic of the triple ¯ame con®guration, including the
fuel-rich and fuel-lean premixed ¯ames and the trailing

downstream di�usion ¯ame arc. The system is assumed
to be steady. All boundaries except the divider plate

are porous, non-reactive walls, whose temperature is
T0. The velocities, v, of the two streams are identical
and speci®ed at the inlet boundary [9,10]. The chemical

reaction between the fuel and oxidizer occurs through
a single irreversible step. It has been shown [11,12]

that, although not capturing all the quantitative
characteristics of the ¯ame, single step chemistry cap-
tures many qualitative characteristics such as ¯ame

structure and temperature. Furthermore, even in multi-
step kinetics models, only a few reactions are respon-
sible for a majority of the heat released during com-

bustion. The molecular weights of the reactants are
assumed identical, the thermophysical properties r, l,
cp, D, are assumed constant, the Lewis numbers of the
reactants are equal to unity, the in¯uences are gravity
and radiation (from the surface and the gas) are neg-

lected, and Soret and Dufour terms are neglected. The
di�usion velocities are given by Fick's law, and heat
conduction is described by Fourier's law. Under these

restrictions, the equations for conservation of species
and energy become

rv
@Y0

@y
� rDr2Y0 ÿ nW �1a�

rv
@YF

@y
� rDr2YF ÿW �1b�

rvcp
@T

@y
� rlr2T� qW �1c�

where W � rAYOYF exp�ÿE=RT � and the boundary
conditions are

T � T0, YO � YOO, YF � 0

at �x � l=2, yr0�, �0 < x < l=2, y � 0�
�2a�

T � T0, YO � 0, YF � YFF

at �x � ÿl=2, yr0�, � ÿ l=2 < x < 0, y � 0�
�2b�

@T

@y
� @YO

@y
� @YF

@y
� 0 at y � 1 �2c�

Eqs. (1a)±(1c) and (2a)±(2c) can be written more com-

pactly in non-dimensional form. We rescale the inde-
pendent variables with l=2 to obtain x � x=�l=2�,
Z � y=�l=2� so that x �21 in the two corners of Fig.
1(a). The species mass fractions are normalized as

yF � YF=YFF, yO � YO=YOO: Hence, both yF and yO
are bounded by zero and unity. Similarly, the non-
dimensional temperature is t � �Tÿ T0�=�Tf ÿ T0�,
whereby t � 0 on all boundaries and t41 at the ¯ame
sheet. Finally, the non-dimensional mass ¯ux past the
divider is Pe � rvcpL=l: Additional physical quantities,

which are important to our subsequent analysis, are
the global stoichiometric index

j � nYFF

YOO

�3�

where n is the ratio of mass of oxidizer to mass of fuel

in the one-step reaction; the Zel'dovich number b,
which is a measure of the temperature sensitivity of
the reaction

b � a
E

RT
, a � 1ÿ T0

Tf

; �4�

the Damkohler number, Da, as a ratio of the di�usion
time to the reaction time

Da � L2=
ÿ
l=rcp

��
AYOO exp� ÿ E=RTf �

�ÿ1 �5�

With the adiabatic ¯ame temperature Tf de®ned as
Tf � T0 �QYFF=cp�1� f�, the non-dimensional reac-
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tion term becomes

w � yOyF exp

� ÿb�1ÿ t�
1ÿ a�1ÿ t�

�
�6�

The non-dimensional conservation Eqs. (1a)±(1c) can
now be written as

Pe
@yO

@Z
� r2yO ÿ jDaw �7a�

Pe
@yF

@Z
� r2yF ÿDaw �7b�

Pe
@t
@Z
� r2t� �1� j�Daw �7c�

with r2 � @ 2=@x2 � @ 2=@Z2: The dimensionless Eqs.

(2a)±(2c) become

t � 0, yO � 0, yF � 1

at �x � ÿ1, Zr0�, � ÿ 1 < x < 0, Z � 0�
�8a�

t � 0, yO � 1, yF � 0

at �x � 1, Zr0�, �0 < x < 1, Z � 0�
�8b�

@t
@Z
� @yO

@Z
� @yF

@Z
� 0 as Z41 �8c�

Eqs. (7a)±(7c) and (8a)±(8c) can be formulated in
terms of the excess enthalpy function

H � t� yO � yF ÿ 1, the mixture fraction
Z � �1ÿ Zf�yF � ZF�1ÿ yO�, and t: Here Zf �
�1� f�ÿ1 is the value of Z along the stoichiometric
contour. The minimum value of Z is zero at the oxi-

dizer surface, where yO � 1 and yF � 0 and its maxi-
mum value is unity at the fuel surface, where yO � 0,
yF � 1: For our problem, the maximum possible value

of H is zero and the minimum possible value is ÿ1.
Functions Z and H satisfy the homogeneous forms of
Eqs. (7a) and (7b), which amounts to a balance

between convection and di�usion. The system of Eqs.
(7a)±(7c) become

Pe
@t
@Z
� r2t� �1� j�Daw �9a�

Pe
@Z

@Z
� r2Z �9b�

Note that the solution for H is H � 0 everywhere; the
total enthalpy in the gas is constant. The boundary
conditions for Eqs. (9a) and (9b) are

t � 0, Z � 1 at �x � ÿ1, Zr0�, � ÿ 1 < x < 0, Z � 0� �10a�

t � 0, Z � 0 at �x � 1, Zr0�, �0 < x < 1, Z � 0� �10b�

@Z

@Z
� @t
@Z
� 0 at Z41 �10c�

The simplest case is Pe � 0, which produces a purely
di�usive problem. The equation for Z is easily solved

to give Z � pÿ1�p=2ÿ tanÿ1ftan�px=2�=tanh�pZ=2�g�: The
stoichiometric contour is the arc along which Z � Zf ,
see Fig. 1(a). The trailing di�usion ¯ame lies very near

this arc, as shown.
These solutions for H and Z can be utilized to pro-

duce estimates for the heat ¯ux to the bounding sur-

faces. This becomes especially straightforward in the
case of in®nite rate chemistry because the ¯ame is
attached to the divider, see Fig. 1(a). On the fuel side,
r
~
Z � �1ÿ ZF�r

~
yF, whereas on the oxidizer side r

~
Z �

ÿZFr
~
yO: From the constancy of H, we have either

r
~
yF �ÿr

~
t or r

~
yO �ÿr

~
t giving r

~
t � ÿ�1ÿ ZF�ÿ1r

~
Z

on the fuel side and r
~
t � Z ÿ1F r

~
Z on the oxidizer side.

From the preceding solution for Z, we ®nd

r
~
Z � x

~

^
"
ÿsinh�pZ=2� cosh�pZ=2�
2
ÿ
sin2 px=2� sinh2 pZ=2

� #

� Z
~

^
"

sin�px=2� cos�px=2�
2
ÿ
sin2 px=2 sinh2 pZ=2

� # �11�

Along the lower surface ÿ1 < x < 1, Z � 0 we ®nd

r
~
t � ÿZ

~

^

2�1ÿ ZF �tan px=2
, ÿ 1 < x < 0 �12a�

r
~
t �

Z
~

^

2ZF tan px=2
, 0 < x < 1 �12b�

Along the vertical walls at x � ÿ1 and x � �1, we ®nd

r
~
t �

x
~

^

2�1ÿ ZF �tan pZ=2
, x � ÿ1 �13a�

r
~
t � ÿx

~

^

2ZF tan pZ=2
, x � �1 �13b�

From Eq. (12a), the heat ¯ux to the divider is in®nite
because the ¯ame is attached to the divider. However,

the ¯uxes to the nearby surface may possibly be accu-
rately represented by these equations. Part of our goal
in this article is to ascertain the accuracy of Eqs. (12a)

and (13a) away from the divider, and thus to deter-
mine the practical usefulness of in®nite-rate Burke±
Schumann heat ¯ux calculations.
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Eqs. (9a), (9b) and (10a)±(10c) will serve as a bench-

mark for comparing the Burke±Schumann results and
the heat-transfer model results of Sections 3 and 4.
These equations will be solved numerically using an
Alternating Direction Implicit (ADI) method. Because

the use of the mixture fraction and excess enthalpy
functions de-couples the species equations from the
energy equation, Eq. (9b) is solved ®rst. Then, using

the de®nitions of Z and H, Eq. (9a) is solved. The
non-linear reaction term in Eq. (9a) is handled by
using the results of the previous iteration, thus lineariz-

ing the numerical system.

3. Simpli®ed heat transfer model `B'

In model `B', the ¯ame arc becomes a constant tem-
perature line, t � 1, extending downstream from the

point rq, see Fig. 1(b). The boundary conditions on the
surfaces are t � 0 and at Z41; we have the zero
gradient condition @t=@Z � 0 as before. The governing
equation is r2t � 0 in the case of zero convection;

r2t � Pe�@t=@Z� in the case with uniform and identical
convection from the fuel and oxidizer reservoirs ad-
jacent to the divider. The introduction of scaled coor-

dinates X � x=rq and N � Z=rq places the ¯ame leading
edge at the intersection of the circular arc R �������������������
X2 �N 2

p
� 1 and the line Z � Zf : Here, rq is the

quenching distance de®ned as the distance from the
divider plate to the point of maximum reactivity. The
¯ame usually quenches a very small distance upstream

of the point of maximum reactivity, hence, there is no
inconsistency in de®ning quenching distance in this
manner. In the general case, this transformation o�ers

no advantages for solution because the scaling merely

changes the separation distance between the two verti-
cal walls from 2 to 2=rq: When rq becomes small, how-
ever, the vertical walls e�ectively disappear, and the
¯ame sheet lies along the radially-directed arc y � pZf ,

1 < R <1: There are no length scales remaining in
this problem, leaving a universal heat ¯ux distribution
to the lower surface given by @t�X, 0�=@N � g�X; Zf �:
Here, Zf is the sole remaining parameter in the analy-
sis. In terms of the original coordinates, we have

@t�x, 0�
@Z

� 1

rq

g

�
x
rq

; Zf

�
�14�

The maximum ¯ux occurs at the point where the de-

rivative of @t�x, 0�=@Z vanishes.
The above expression in Eq. (14) is universal to the

extent that the ¯ame curvature can be neglected. If rq
is not su�ciently small, the curvature of the ¯ame
towards the vertical axis (see Fig. 1(a)) becomes im-
portant and the equation loses accuracy, producing an

over-estimate for the surface heat ¯ux. From Eq. (14),
the integrated ¯ux along the surface is a function only
of Zf , i.e.,

�1
ÿ1�@t=@Z� dx �

�1
ÿ1 g�X; Zf� dX � Q�Zf �:

The function Q�Zf� is not symmetric about Zf � 1=2
because the quench radius is asymmetric with respect
to Zf. It has been shown in Ref. [2] that Q increases as
Zf decreases, largely because of the increase in the

¯ame temperature. This feature, we observe, is not
built into this simpli®ed model.
As shown in previous works [2,9,10], the model con-

®guration of Fig. 1(a) can be mapped via conformal
mapping methods into the con®guration shown in Fig.
2. In this latter con®guration, the ¯ame is in fact a

Fig. 2. Model con®guration of mixture fraction Z after conformal mapping. Note that the straight di�usion ¯ame along Z � Zf

occurs only in the case of zero convection. In addition, lines of constant Z are radially-directed arcs, Z � y=p:
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radial arc.1 The heat ¯ux to the surface is @t=@Z �
�@t=@v��@v=@Z�: Analogous to the previous derivation,
we de®ne the scaled coordinates U � u=r 0q, V � v=r 0q,
where r 0q �

���������������
u2q � v2q

q
and

��������������������
U 2 � V 2
p � 1 at the semi-

circular arc containing the ¯ame leading edge. Then
@t=@Z � �@t=@V ��@V=@v��@v=@Z�, with @t�U,
0�=@V � g�u=r 0q; Zf �, @V=@v � 1=r 0q and @v=@Z �
�p=2�cos px=2 at the surface Z � 0: Thus

@t
@Z
� g

 
sin px=2

r 0q
;Zf

!
p cos px=2

2r 0q
�15a�

r 0q �
���������������
u2q � v2q

q
�

�������������������������������������������������������
sin2ÿpxq=2

�� sinh2ÿpZq=2
�q

�15b�

For small xq and Zq, we ®nd r 0q � �p=2�rq in which case
Eq. (15a) corresponds with Eq. (14).
Numerical solutions of this heat transfer model

are generated in Section 4 for the heat ¯ux to the
surface.

4. Results and discussion

To begin the analysis, comparisons are made

between the ®nite-rate chemistry model `A', the
Burke±Schumann, and the conduction heat transfer
model `B' predictions of the heat ¯ux distribution to

the lower cold boundary. Here, it is assumed that the
di�using reactants at Z � 0 have the constant tempera-
ture, T0. In Fig. 3(a) and (b), the results from each

model are presented for a vertical ¯ame with Zf � 1=2
at two di�erent quenching distances. Comparisons are
also made for a fuel-lean and a fuel-rich ¯ame in Fig.
4(a) and (b), respectively. The results presented are for

the Burke±Schumann (B±S) solution for the heat ¯ux,
the heat ¯ux obtained by solving the ®nite rate chem-
istry equations (model `A'), and the heat ¯ux from the

simpli®ed heat transfer model `B'.

Fig. 3. (a) Heat ¯ux pro®les comparison for straight ¯ames

rq � 0:27: Note the inaccuracy, generally, of the Burke±

Schumann calculation of Eqs. (12a) and (12b) and the com-

parative similarity of the ®nite-rate and heat transfer model

results. A scaling factor renders the latter two visually indis-

tinguishable. Heat ¯ux comparisons for straight ¯ame

rq � 0:9: (b) Heat ¯ux pro®les comparisons for straight ¯ames

rq � 0:9: The comments to (a) apply here as well.

Fig. 4. (a) Heat ¯ux pro®le comparisons for fuel rich ¯ames

f � 0:5, rq � 0:38: For this non-symmetric case, the ¯ux dis-

tribution is asymmetric. The Burke±Schumann model is once

again a poor approximation to the heat ¯ux. (b) Heat ¯ux

pro®le comparisons for fuel-lean ¯ames f � 1:5, rq � 0:28:
See comments in (a).

1 This is only strictly true in the zero convection case,

Pe � 0:
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Examination of the stoichiometric ¯ames in Fig. 3(a)
and (b) reveal two important features. First, the B±S

solution given by Eqs. (12a) and (12b) o�ers very
di�erent results for both large and small quench dis-
tances when compared to either the heat conduction

and the ®nite chemistry models. Second, the simple
heat conduction model captures most of the character-
istics of the ®nite chemistry model, although the heat

¯ux magnitude is slightly diminished. If a scaling fac-
tor is employed, better agreement is achieved. These
results are for a pure di�usion ¯ame with no convec-

tion �Pe � 0).
The reaction zone characteristics for model `A' di�er

from those used in model `B'. The conduction model is
based on a ¯ame sheet consisting of an in®nitesimally

thin reaction zone, which extinguishes a ®nite distance
rq from the divider plate. By contrast, the ®nite-rate
chemistry case produces a more broadly spread reac-

tion zone. Given this condition, it is expected that the
heat transfer model will under-predict the heat loss for
the pure di�usion case, as well as have a narrower

peak. These characteristics are indeed observed in Figs.
3 and 4. Consistent with this, the conduction model
produces better agreement with the ®nite rate case as

the quenching distance, rq, decreases.
For the non-symmetric case Zf 6� 1=2 (see Fig. 1(a)),

the ¯ame shape will be de®ned by the following
relation between the ¯ame-shape coordinates x
and Z:

x � 2

p
tanÿ1

8>>><>>>:
tanh

�
pZ
2

�
tan

�
p
2
ÿ pZf

�
9>>>=>>>; �16�

Fig. 4(a) and (b) show the results for two non-stoichio-

metric cases. The simpli®ed model follows well the
trends of the ®nite rate case. The model produces a
maximum heat ¯ux at a slightly di�erent location

along the lower surface than predicted by the ®nite
rate chemistry case. The conduction model shifts the
maximum away from the divider. This can be attribu-

ted to the wider ¯ame tip for the ®nite-rate chemistry
case. Even with this shift the heat transfer model is
closer to the ®nite rate chemistry case than the B±S
solution. There also exists a strong asymmetry for the

non-stoichiometric ¯ames. Departures towards the fuel
rich side produce closer quench distances, and conse-
quently, larger heat losses to the lower boundary. The

maximum heat ¯ux location is also closer to the div-
ider.
Some generalizations about the shape of the heat

¯ux pro®le can be made. We wish to provide a better
approximation for the heat loss pro®les than those
given by the readily available B±S solution. We also

seek to ascertain where, if at all, the B±S solution
accurately represents the heat ¯ux to the lower bound-

ary.
The heat ¯ux pro®les for small quenching distances
�rq < 0:15� obtained from model `B' were found to col-

lapse to a single curve. This collapse of the heat ¯ux
pro®les is predicted theoretically in Section 3 by Eq.
(14). The correlations were obtained for both straight
¯ames and non-stoichiometric ¯ames. These curve ®ts

were obtained by using an ordinary least squares
method. The correlations are non-linear so a Gauss
iteration scheme was used.

For symmetric �Zf � 1=2� ¯ames, the heat ¯ux pro-
®le can be described by the three parameter relation
given below

q � 0:572

rq

e

ÿ

����� xrq

�����
b1 ����� xrq

������ b2

!b3

�17�

Parameters b1, b2, and b3 are 1.07, 1.01, and 0.8, re-

spectively. Note that this result does not include any
scaling factor; it is solely the shape of the heat ¯ux
pro®le obtained from the conduction model. Although

this result is applicable only for small quenching dis-
tances, the same shape can be applied to larger
quenching distances by changing the numerical par-
ameters b1, b2, and b3:
It is more challenging to model the non-symmetric

¯ames because several quantities must be taken into
account. The maximum heat loss is shifted away from

the divider, and the spatial decay rates are di�erent on
each side of the maximum. The in¯ection points of the
heat ¯ux pro®le are located at several di�erent dis-

tances from the maximum. To account for these
characteristics a ®ve parameter correction factor, c�x�,
is introduced, viz.,

Table 1

Correction factor coe�cients

f b4 b5 b6 b7 b8

0.333 1.045 ÿ0.179 ÿ0.313 1.074 0.977

0.429 0.746 ÿ0.08 ÿ0.210 1.039 1.018

0.538 0.563 ÿ0.096 ÿ0.127 1.093 1.004

0.667 0.392 ÿ0.194 ÿ0.046 1.170 0.974

0.818 0.204 ÿ0.084 ÿ0.024 1.227 0.964

1.222 ÿ0.204 0.084 ÿ0.024 1.227 0.964

1.5 ÿ0.392 0.194 ÿ0.046 1.170 0.974

1.857 ÿ0.563 0.096 ÿ0.127 1.093 1.004

2.333 ÿ0.746 0.08 ÿ0.210 1.039 1.018

3.0 ÿ1.045 0.179 ÿ0.313 1.074 0.977
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rq
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rq
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#

exp
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����� xrq
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�����
b8
1A �18�

With this correction factor the heat ¯ux pro®les take
the form

q � 0:572

rq

0BB@e

ÿ

����� xrq

�����
1:07 ����� xrq

������ 1:01

!0:8

ÿc�x�

1CCA �19�

The ®ve parameter values are dependent on the stoichi-
ometry parameter f: Table 1 shows values of b4 to b8
for selected f values.
The above results can be used in conjunction with a

scaling factor (see Section 4.1) to obtain a good ap-
proximation for the heat ¯ux pro®le to the lower

boundary.
The case with convection is not considered in the

numerical model or in the analytical model. However,

as the discussion of Section 3 makes clear, when the
quenching distance is small the heat ¯ux pro®les
should closely resemble the zero-convection case. This

occurs because a rescaling of the independent variables
in the governing equations with rq will eliminate the
convective terms as rq40: Fig. 5 shows the results
when Pe � 1: The quenching distance is computed for

the ®nite rate chemistry case and used to determine the
heat ¯ux pro®le from the simple conduction model.
From Fig. 5 we observe ®rst that the model predicts

well the heat ¯ux pro®le. The qualitative shape of the
heat ¯ux pro®le is identical to the zero convection
case. Once again, it appears all that is needed for com-

plete agreement whenever Pe is changed is the intro-
duction of a di�erent numerical scaling factor in Eq.
(19).

4.1. Scaling factor

In order to account for the di�erence in reaction
zone thickness between the model and the ®nite rate
chemistry case a scaling factor S was introduced.
Factor S scales the maximum heat ¯ux from the heat

transfer model to the value obtained in the ®nite rate
chemistry case. Values of S were obtained for stoichio-
metric ¯ames and then tested with non-stoichiometric

¯ames to determine whether these values were still
valid. Factor S was obtained as functions of the
quenching distance, not the chemical parameters such

as the Zel'dovich number, for which the dependence is
much weaker than quenching distance. It is noted that
the quenching distance depends on the chemical par-

ameters. Hence, the scaling factor was correlated with
the quenching distance. The relatively weaker b and
Damkohler number dependence manifests itself im-
plicitly through the e�ects of the reaction zone thick-

ness on the quenching distance.
It was found that for the stoichiometric ¯ame, S had

a nearly linear dependence on rq. The relationship is

shown below

S � 1:72rq � 0:66 �20�

Eq. (20) can be used as a direct multiplication factor
in Eq. (19) for small deviations from stoichiometric
¯ames, 0:33 < f < 3:0, with S values within 10% of

the numerical results.

4.2. Comparison of centerline heat losses

Examination of the temperature pro®le along the

stoichiometric contour ZF � 1=2 for vertical ¯ames is
used to verify the scaling factor, as well as to identify
any shortcomings of the proposed heat transfer model.

Fig. 5. Heat ¯ux pro®le comparison for straight ¯ame with

convection Pe � 1, rq � 0:395:
Fig. 6. Centerline temperature distributions for a straight

¯ame rq � 0:375: The broadness of the actual ¯ame moderates

the temperature variation, compared with the sharp heat

transfer pro®le. The t values along the di�usion ¯ame

�Z > 0:5� agree to within O�bÿ1�:
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The preliminary comparison was done for a moder-
ately small quenching distance, rq � 0:375, and a pure

di�usion ¯ame. The quenching distance was calculated
by using the ®nite-rate chemistry code to solve for the
quenching location, as de®ned by the maximum reac-

tivity, as well as the vertical temperature distribution
at the centerline. The resulting quench distance was
employed in the heat conduction model and the tem-

perature pro®le was calculated. A graphical compari-
son is shown in Fig. 6.
From Fig. 6 we observe that the heat conduction

model underpredicts the heat loss to the divider plate.
This is expected in view of the relative magnitude of
the heat loss pro®les to the lower boundary.
Furthermore, as expected, if a ratio of the ®nite rate

gradient to the heat transfer model gradient is exam-
ined it will produce the scaling factor S already exam-
ined. With this information, and noting that the

scaling factor had a small dependence on the
Zel'dovich and Damkohler numbers which will be
ignored here, the gradient ratio should behave very

similarly to the scaling factor with respect to rq. We
recall that S varied nearly linearly with the quenching
distance. Examination of that relationship in Eq. (20)

suggests that the heat conduction model gradient will
approach the ®nite rate model gradient as the quench-
ing distance becomes small.
Another feature shown in Fig. 6 is the di�erent

¯ame temperatures of the two codes. The heat conduc-
tion model assumes a ¯ame temperature of 1.0 for the
¯ame and uses that elevated value as its quasi-heat

source. The ®nite rate model temperature is calculated
from the set of partial di�erential equations shown in
Section 2. The ®nite rate model produces a lower ¯ame

temperature, as expected, since t11ÿO�bÿ1�: This
contributes to the more gradual decline in temperature
towards the lower wall, and consequentially the more
linear gradient. This linear gradient supports the sim-

pli®ed notion of assuming a linear pro®le from the
quench location to the wall [2,10]. However, this
assumption is typically based on an adiabatic ¯ame

temperature close to unity (i.e., b41 limit), and does
not take into account any heat losses through the reac-
tion zone. The heat loss from the reaction zone in the

®nite-rate model `A' is evident beginning near Z � 0:5
and continuing to the location of the heat-transfer
model ¯ame tip at Z � 0:375:

4.3. Comparison to ®nite-chemistry model [2,9]

A comparison of our heat transfer results may be

made to the ®nite-rate chemistry model examined in
Refs. [2,10]. The heat transfer cold wall beneath the
¯ame leading edge is given by

q � W

b3=2q

��������
Da

b3

s
4

p
�1ÿ Zf �1=2 sin2�pZf � �21�

where

W � 1�
(
�1ÿ Zf �

�
sin p�Zf ÿ dO �

sin pZf

ÿ 1

�

� Zf

�
sin p�Zf � dF �

sin pZf

ÿ 1

�)
�22a�

bq � 3:752
�
1ÿ exp

ÿÿ 7:366Z 1:71
f

�	
Z 0:36

f �22b�

and dO � Zf �1ÿ tq�, dF � �1ÿ Zf��1ÿ tq�, where tq,
the ¯ame leading edge quenching temperature, is given

by 1ÿ k=b: It is shown in Section 4.2 of Ref. [2] that a
value of k between 1.5 and 2 is reasonable. We use
k � 1:75: For the symmetric case Zf � 1=2, we ®nd

dO � dF � k=2b, whereby W � cos�pk=2b� and
bq � 2:62, giving q � 0:21 cos�pk=2b��Da=b3�1=2:
The use of k � 1:75, and b � 8:0 gives the estimate

q � 0:198�Da=b3�1=2: In order to relate this result to
the quench distance, we employ Eq. 8 of Ref. [2],
which gives

rq � 2

p

b3=2q

4Zf�1ÿ Zf �3=2

��������
b3

Da

s
�23�

where we have used the factor p=2 to convert r 0q of Eq.
8 of Ref. [2] from the u±v system of coordinates to the
xÿ Z coordinates used here, as outlined in Section 3,
see Eq. (15b) et seq. The preceding numbers give

rq � 3:82�b3=Da�1=2, whereby, q � 0:76=rq, which com-
pares favorably with Eq. (17), q � 0:57=rq, especially
when we consider that the latter must be multiplied by

a scaling factor greater than unity given by Eq. (20).
Consequently, the heat transfer model prediction is

functionally consistent with the more detailed ®nite

chemistry model. In addition, and in contrast with
Ref. [2], the heat transfer model produces an ex-
pression for the distribution of q along the entire sur-

face, not only its maximum value. For this reason, it is
possible to replace the factor 0:572=rq in Eq. (17) with
Eq. (21), using Eqs. (22a) and (22b) for W and bq, re-
spectively. The pure heat transfer formula now

includes the in¯uences of ®nite-rate one-step chemistry.
A similar replacement, of course, may be made in Eq.
(19) for the asymmetric case.

4.4. Zel'dovich number e�ects

As stated previously, the temperature gradients at
the lower boundary produced by the two models show
better agreement as rq decreases. That is not to say
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that the pro®les become more similar under this cri-

terion. The presented pro®les can be divided into three

general regions: the ¯ame tip region, the wall region,

and the transition region which connects the two

aforementioned regions. As will become evident from

Fig. 7(a) and (b) below, the transition region between

the two models have distinctly di�erent shapes. The

conduction model produces a much steeper gradient

immediately after the ¯ame tip and a much smaller

gradient at the wall. Hence, the transition region is

much more curved than the nearly linear temperature

pro®le produced by ®nite rate chemistry model.

Having noted that the pro®les agree well in the wall

region when the ¯ame quenches very close to the lower

boundary and that the transition regions will have

their own characteristics, it is of interest to ®nd the

conditions where the ¯ame tip regions exhibit agree-

ment.

The ®nite rate model produces a ¯ame temperature

that is lower than the adiabatic ¯ame temperature.

This suggests that for the ¯ame tip regions to agree,

the ®nite rate model should produce a ¯ame tempera-

ture closer to the adiabatic temperature assumed for

the conduction model. This can be achieved by increas-

ing the Zel'dovich number, b, which also has the e�ect

of increasing the quench distance. This produces a

higher ¯ame temperature and lower heat losses

through the ¯ame tip, thus improving agreement in the

¯ame tip region of the temperature pro®les. However,

the gain in agreement in one region reduces it in

another, as can be seen in Fig. 7(a) and (b).

Agreement may also require an unrealistically large

value of b:
The Zel'dovich number also depends on the wall

temperature T0 through the relation b � �E=RT 2��
�Tf ÿ T0�: When all quantities other than T0 are ®xed,

Fig. 7. (a) Centerline temperature pro®le for a straight ¯ame rq � 0:525: (b) Centerline temperature distribution for a straight ¯ame

rq � 1:225: For large quench distances the pure heat transfer temperature pro®le di�ers signi®cantly from the ®nite-rate chemistry

pro®le.
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it is possible to examine the in¯uences of wall tempera-
ture on heat ¯ux and ¯ame quenching distance. Since

q10:57=rq and rqA�Tf ÿ T0�3=2, we ®nd
qA�Tf ÿ T0�ÿ3=2, drq=dT0Aÿ �Tf ÿ T0�1=2,
dq=dT0A�Tf ÿ T0�ÿ5=2: Thus, as T0 increases rq
vanishes at a successively decreasing rate, while q
increases at a successively increasing rate. Under prac-
tical conditions, we expect that the near-wall ¯ame tip

can heat the wall, raising T0 and decreasing rq, while
increasing q. It is not clear how long this incremental
process can continue, for there are upper bounds on

the chemical production of heat that leads to q.

4.5. Characteristic ¯ame-tip width

For small rq, a practical estimate of the width of the
triple-¯ame structure, shown as the lowermost arc of
Fig. 1(a), is obtained by exploiting the relationship for

q�x� given by Eq. (17). We note the closeness of b1, b2,
and b3 to unity and write
q�x�1C exp�ÿx=rq��1� x=rq�, where C � 0:572=rq: This
function possesses an in¯ection point at x � rq, which
we interpret as a measure of the triple-¯ame tip struc-
ture half-width, lr: Thus, we write

lr12rqAb3=2 exp�E=2RTf � �24�

This result agrees with a previously derived estimate
[13]. As the ¯ame temperature increases, all remaining
constant, both b and the exponential factor decrease.

Hence, lr decreases exponentially and algebraically as
¯ame temperature increases. Conversely, as the non-
dimensional activation energy increases, lr increases ex-

ponentially.

4.6. The q±rq relationship

In our study, the relation (17) was derived for in®-
nite-rate chemistry, and the modi®cations of Section
4.3 were appended under the approximation that the

in®nite-rate chemistry limit was a reasonably accurate
approximation. In this case, the essential prediction is
qrq0O�1� and constant. We expect this relation to

apply in a broad middle range, but not at the extremes
q41 �rq40� and q40 �rq41). The latter limit
may be interpreted as ¯ame lifto�, whereas the former
as ¯ame extinction. Lifto�, followed eventually by

blowo�, occurs when heat losses to solid boundaries
cannot be sustained. The separation distance between
surface and ¯ame increases until the ¯ame e�ectively

no longer interacts with the surface. At blowo�, even
gas-phase ¯aming becomes impossible. Extinction, on
the other hand, occurs when the ¯ame loses too much

heat to the surface to survive. It produces enough heat
that lifting is not necessary, but the losses to the sur-
face become excessive. Or numerical integrations have

in fact produced both limiting cases, although the
detailed description is beyond the scope of this article.

Nevertheless, it appears that the extinction limit is
attainable without radiant losses from the ¯ame tip,
without thermal expansion of the gas, or without

buoyancy. All that is required for a minimalist descrip-
tion is chemical heat production and conductive sur-
face losses.

5. Conclusions

The conductive heat transfer sub-model reproduces
many of the global features of the ®nite rate chemistry

case. The pro®les at the lower boundary are similar for
both models with only a scaling factor needed to pro-
duce accurate agreement. However, when examining

the temperature pro®les along the centerline of the
lifted ¯ame the two models can produce signi®cantly
di�erent results for the transition region and the ¯ame

tip region, especially as the quenching distance
increases. This can be partially attributed to the
assumption of a ¯ame sheet in the heat transfer model,
which di�ers from the non-zero ¯ame thickness pro-

duced by ®nite rate chemistry. The conduction heat
transfer model is unable to accurately predict the heat
loss from the ¯ame tip, even for pure di�usion ¯ames.

For this reason the conduction model is not useful for
describing thermal phenomena close to the ¯ame tip,
but is very useful in examining events away from this

region as is generally true for other heat transfer
models of detailed ¯ame process [5]. This limitation
might be overcome by introducing a volumetric heat

generation term into the conduction model that has
temperature dependence, but this is a subject for future
study.
For modeling ®nite rate chemistry in¯uences on the

heat ¯ux, we recommend a combination of Eqs. (17)
[or (19) and (21)], with the later being substituted for
the factor 0:572=rq appearing in the formula. This

combined equation accurately predicts the ¯ux beneath
the ¯ame leading edge and also its distribution along
the surface.

It is also noted that the results obtained herein may
be limited to con®gurations closely resembling the slot
con®guration used in this work. The heat ¯ux pro®les
for other lifted ¯ames with di�erent physical and ¯ow

orientations may produce di�erent correlations. It is a
limitation of the work that the methods used here will
need to be followed for di�erent problems. However,

the usefulness of the results is not diminished for this
lack of adaptability. The general result of our research
is to show that beneath the ¯ame tip q0O�1=rq�,
where rq0O��b3=Da�1=2�, to within a multiplicative
function of global stoichiometry. Although this result
may be deduced by simple dimensional analysis and
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scaling arguments, we have in addition quanti®ed the
heat ¯ux distribution beneath the ¯ame tip.
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